Special Functions

numerics4c++ provides the means to evaluate several useful functions. These functions were developed to be used internally by numerics4c++ but, as they may be useful for other uses outside the scope of numerics4c++, their implementations are made public for general use. These special functions are broken down into several categories:

CategoryDescription
Beta Contains several useful functions involving the Beta function.
Error Function Contains several useful functions involving the Error function.
Gamma Contains several useful functions involving the Gamma function.
Trigometric Contains several functions related to trigonometric functions.

Beta

numerics4c++ provides implementations for several functions related to the Beta function:

FunctionC++ FunctionReference
Log Beta log_beta
Eric W. Weisstein. "Beta Function."
From MathWorld--A Wolfram Web Resource.
Regularized Beta regularized_beta
Eric W. Weisstein. "Regularized Beta Function."
From MathWorld--A Wolfram Web Resource.

Error Function

numerics4c++ provides implementations for several functions related to the error function:

FunctionC++ FunctionReference
Complementary Error Function erfc
Eric W. Weisstein. "Erfc."
From MathWorld--A Wolfram Web Resource.
Error Function erf
Eric W. Weisstein. "Erf."
From MathWorld--A Wolfram Web Resource.

Gamma

numerics4c++ provides implementations for several functions related to the Gamma function:

FunctionC++ FunctionReference
Log Gamma log_gamma
Eric W. Weisstein. "Gamma Function."
From MathWorld--A Wolfram Web Resource.
Regularized Gamma
Eric W. Weisstein. "Regularized Gamma Function."
From MathWorld--A Wolfram Web Resource.

Trigometric

numerics4c++ provides implementations for several functions related to trigonometric functions:
FunctionC++ FunctionReference
Inverse Hyperbolic Cosine acosh
Eric W. Weisstein. "Inverse Hyperbolic Cosine."
From MathWorld--A Wolfram Web Resource.
Inverse Hyperbolic Sine asinh
Eric W. Weisstein. "Inverse Hyperbolic Sine."
From MathWorld--A Wolfram Web Resource.
Inverse Hyperbolic Tangent atanh
Eric W. Weisstein. "Inverse Hyperbolic Tangent."
From MathWorld--A Wolfram Web Resource.